Elements Of Fluid Dynamics Volume 3 Book PDF, EPUB Download & Read Online Free

Elements of Fluid Dynamics
Author: Guido Buresti
Publisher: World Scientific Publishing Company
ISBN: 1908977043
Pages: 604
Year: 2012-06-26
View: 939
Read: 571
Elements of Fluid Dynamics is intended to be a basic textbook, useful for undergraduate and graduate students in different fields of engineering, as well as in physics and applied mathematics. The main objective of the book is to provide an introduction to fluid dynamics in a simultaneously rigorous and accessible way, and its approach follows the idea that both the generation mechanisms and the main features of the fluid dynamic loads can be satisfactorily understood only after the equations of fluid motion and all their physical and mathematical implications have been thoroughly assimilated. Therefore, the complete equations of motion of a compressible viscous fluid are first derived and their physical and mathematical aspects are thoroughly discussed. Subsequently, the necessity of simplified treatments is highlighted, and a detailed analysis is made of the assumptions and range of applicability of the incompressible flow model, which is then adopted for most of the rest of the book. Furthermore, the role of the generation and dynamics of vorticity on the development of different flows is emphasized, as well as its influence on the characteristics, magnitude and predictability of the fluid dynamic loads acting on moving bodies. The book is divided into two parts which differ in target and method of utilization. The first part contains the fundamentals of fluid dynamics that are essential for any student new to the subject. This part of the book is organized in a strictly sequential way, i.e. each chapter is assumed to be carefully read and studied before the next one is tackled, and its aim is to lead the reader in understanding the origin of the fluid dynamic forces on different types of bodies. The second part of the book is devoted to selected topics that may be of more specific interest to different students. In particular, some theoretical aspects of incompressible flows are first analysed and classical applications of fluid dynamics such as the aerodynamics of airfoils, wings and bluff bodies are then described. The one-dimensional treatment of compressible flows is finally considered, together with its application to the study of the motion in ducts. Sample Chapter(s) Chapter 1: Introduction (133 KB) Request Inspection Copy
Fluid Vortices
Author: Beverley Green
Publisher: Springer Science & Business Media
ISBN: 0792333764
Pages: 880
Year: 1995-03-31
View: 944
Read: 205
Fluid Vortices is a comprehensive, up-to-date, research-level overview covering all salient flows in which fluid vortices play a significant role. The various chapters have been written by specialists from North America, Europe and Asia, making for unsurpassed depth and breadth of coverage. Topics addressed include fundamental vortex flows (mixing layer vortices, vortex rings, wake vortices, vortex stability, etc.), industrial and environmental vortex flows (aero-propulsion system vortices, vortex-structure interaction, atmospheric vortices, computational methods with vortices, etc.), and multiphase vortex flows (free-surface effects, vortex cavitation, and bubble and particle interactions with vortices). The book can also be recommended as an advanced graduate-level supplementary textbook. The first nine chapters of the book are suitable for a one-term course; chapters 10--19 form the basis for a second one-term course.
Computational Fluid Dynamics
Author: John Wendt
Publisher: Springer Science & Business Media
ISBN: 3540850554
Pages: 332
Year: 2008-11-04
View: 1052
Read: 1153
Computational Fluid Dynamics: An Introduction grew out of a von Karman Institute (VKI) Lecture Series by the same title ?rst presented in 1985 and repeated with modi?cations every year since that time. The objective, then and now, was to present the subject of computational ?uid dynamics (CFD) to an audience unfamiliar with all but the most basic numerical techniques and to do so in such a way that the practical application of CFD would become clear to everyone. A second edition appeared in 1995 with updates to all the chapters and when that printing came to an end, the publisher requested that the editor and authors consider the preparation of a third edition. Happily, the authors received the request with enthusiasm. The third edition has the goal of presenting additional updates and clari?cations while preserving the introductory nature of the material. The book is divided into three parts. John Anderson lays out the subject in Part I by ?rst describing the governing equations of ?uid dynamics, concentrating on their mathematical properties which contain the keys to the choice of the numerical approach. Methods of discretizing the equations are discussed and transformation techniques and grids are presented. Two examples of numerical methods close out this part of the book: source and vortex panel methods and the explicit method. Part II is devoted to four self-contained chapters on more advanced material. Roger Grundmann treats the boundary layer equations and methods of solution.
The Handbook of Fluid Dynamics
Author: Richard W. Johnson
Publisher: Springer Science & Business Media
ISBN: 3540646124
Pages: 2000
Year: 1998-08-18
View: 1221
Read: 1153
Providing professionals in the field with a comprehensive guide and resource, this book balances three traditional areas of fluid mechanics - theoretical, computational, and experimental - and expounds on basic science and engineering techniques. Each chapter discusses the primary issues related to the topic in question, outlines expert approaches, and supplies references for further information.
Basics of Fluid Mechanics and Introduction to Computational Fluid Dynamics
Author: Titus Petrila, Damian Trif
Publisher: Springer Science & Business Media
ISBN: 0387238387
Pages: 500
Year: 2006-06-14
View: 669
Read: 672
The present book – through the topics and the problems approach – aims at filling a gap, a real need in our literature concerning CFD (Computational Fluid Dynamics). Our presentation results from a large documentation and focuses on reviewing the present day most important numerical and computational methods in CFD. Many theoreticians and experts in the field have expressed their - terest in and need for such an enterprise. This was the motivation for carrying out our study and writing this book. It contains an important systematic collection of numerical working instruments in Fluid Dyn- ics. Our current approach to CFD started ten years ago when the Univ- sity of Paris XI suggested a collaboration in the field of spectral methods for fluid dynamics. Soon after – preeminently studying the numerical approaches to Navier–Stokes nonlinearities – we completed a number of research projects which we presented at the most important inter- tional conferences in the field, to gratifying appreciation. An important qualitative step in our work was provided by the dev- opment of a computational basis and by access to a number of expert softwares. This fact allowed us to generate effective working programs for most of the problems and examples presented in the book, an - pect which was not taken into account in most similar studies that have already appeared all over the world.
Discontinuous Finite Elements in Fluid Dynamics and Heat Transfer
Author: Ben Q. Li
Publisher: Springer Science & Business Media
ISBN: 1846282055
Pages: 578
Year: 2006-06-29
View: 1145
Read: 1327
Over the past several years, significant advances have been made in developing the discontinuous Galerkin finite element method for applications in fluid flow and heat transfer. Certain unique features of the method have made it attractive as an alternative for other popular methods such as finite volume and finite elements in thermal fluids engineering analyses. This book is written as an introductory textbook on the discontinuous finite element method for senior undergraduate and graduate students in the area of thermal science and fluid dynamics. It also can be used as a reference book for researchers and engineers who intend to use the method for research in computational fluid dynamics and heat transfer. A good portion of this book has been used in a course for computational fluid dynamics and heat transfer for senior undergraduate and first year graduate students. It also has been used by some graduate students for self-study of the basics of discontinuous finite elements. This monograph assumes that readers have a basic understanding of thermodynamics, fluid mechanics and heat transfer and some background in numerical analysis. Knowledge of continuous finite elements is not necessary but will be helpful. The book covers the application of the method for the simulation of both macroscopic and micro/nanoscale fluid flow and heat transfer phenomena.
Elements of Computational Fluid Dynamics
Author: John D. Ramshaw
Publisher: World Scientific
ISBN: 1848167059
Pages: 127
Year: 2011
View: 1239
Read: 268
This book is a brief introduction to the fundamental concepts of computational fluid dynamics (CFD). It is addressed to beginners, and presents the ABC's or bare essentials of CFD in their simplest and most transparent form. The approach taken is to describe the principal analytical tools required, including truncation-error and stability analyses, followed by the basic elements or building blocks of CFD, which are numerical methods for treating sources, diffusion, convection, and pressure waves. Finally, it is shown how those ingredients may be combined to obtain self-contained numerical methods for solving the full equations of fluid dynamics. The book should be suitable for self-study, as a textbook for CFD short courses, and as a supplement to more comprehensive CFD and fluid dynamics texts.
Elements of Fluid Mechanics
Author: David C. Wilcox
Publisher: D C W Industries
ISBN:
Pages: 570
Year: 2005
View: 212
Read: 688

Computational Methods for Fluid Dynamics
Author: Joel H. Ferziger, Milovan Peric
Publisher: Springer Science & Business Media
ISBN: 3642976514
Pages: 364
Year: 2012-12-06
View: 439
Read: 565
A detailed description of the methods most often used in practice. The authors are experts in their fields and cover such advanced techniques as direct and large-eddy simulation of turbulence, multigrid methods, parallel computing, moving grids, structured, block-structured and unstructured boundary-fitted grids, and free surface flows. The book shows common roots and basic principles for many apparently different methods, while also containing a great deal of practical advice for code developers and users. All the computer codes can be accessed from the Springer server on the internet. Designed to be equally useful for beginners and experts.
Encyclopedia of computational mechanics
Author: Erwin Stein, René de Borst, Thomas J. R. Hughes
Publisher: Wiley
ISBN: 0470846992
Pages:
Year: 2004
View: 328
Read: 877

The Finite Element Method for Fluid Dynamics
Author: Olek C Zienkiewicz, Robert L Taylor, P. Nithiarasu
Publisher: Butterworth-Heinemann
ISBN: 0080951376
Pages: 584
Year: 2013-11-21
View: 746
Read: 1288
The Finite Element Method for Fluid Dynamics offers a complete introduction the application of the finite element method to fluid mechanics. The book begins with a useful summary of all relevant partial differential equations before moving on to discuss convection stabilization procedures, steady and transient state equations, and numerical solution of fluid dynamic equations. The character-based split (CBS) scheme is introduced and discussed in detail, followed by thorough coverage of incompressible and compressible fluid dynamics, flow through porous media, shallow water flow, and the numerical treatment of long and short waves. Updated throughout, this new edition includes new chapters on: Fluid-structure interaction, including discussion of one-dimensional and multidimensional problems. Biofluid dynamics, covering flow throughout the human arterial system. Focusing on the core knowledge, mathematical and analytical tools needed for successful computational fluid dynamics (CFD), The Finite Element Method for Fluid Dynamics is the authoritative introduction of choice for graduate level students, researchers and professional engineers. A proven keystone reference in the library of any engineer needing to understand and apply the finite element method to fluid mechanics. Founded by an influential pioneer in the field and updated in this seventh edition by leading academics who worked closely with Olgierd C. Zienkiewicz. Features new chapters on fluid-structure interaction and biofluid dynamics, including coverage of one-dimensional flow in flexible pipes and challenges in modeling systemic arterial circulation.
Mathematical Aspects of Vortex Dynamics
Author: Russel E. Caflisch
Publisher: SIAM
ISBN: 0898712351
Pages: 220
Year: 1989-01-01
View: 1139
Read: 1280

Essential Computational Fluid Dynamics
Author: Oleg Zikanov
Publisher: John Wiley & Sons
ISBN: 1118174399
Pages: 320
Year: 2011-08-26
View: 851
Read: 671
This book serves as a complete and self-contained introduction to the principles of Computational Fluid Dynamic (CFD) analysis. It is deliberately short (at approximately 300 pages) and can be used as a text for the first part of the course of applied CFD followed by a software tutorial. The main objectives of this non-traditional format are: 1) To introduce and explain, using simple examples where possible, the principles and methods of CFD analysis and to demystify the `black box’ of a CFD software tool, and 2) To provide a basic understanding of how CFD problems are set and which factors affect the success and failure of the analysis. Included in the text are the mathematical and physical foundations of CFD, formulation of CFD problems, basic principles of numerical approximation (grids, consistency, convergence, stability, and order of approximation, etc), methods of discretization with focus on finite difference and finite volume techniques, methods of solution of transient and steady state problems, commonly used numerical methods for heat transfer and fluid flows, plus a brief introduction into turbulence modeling.
Computational Fluid Dynamics
Author: T. J. Chung
Publisher: Cambridge University Press
ISBN: 1139493299
Pages:
Year: 2010-09-27
View: 869
Read: 1192
The second edition of Computational Fluid Dynamics represents a significant improvement from the first edition. However, the original idea of including all computational fluid dynamics methods (FDM, FEM, FVM); all mesh generation schemes; and physical applications to turbulence, combustion, acoustics, radiative heat transfer, multiphase flow, electromagnetic flow, and general relativity is still maintained. The second edition includes a new section on preconditioning for EBE-GMRES and a complete revision of the section on flowfield-dependent variation methods, which demonstrates more detailed computational processes and includes additional example problems. For those instructors desiring a textbook that contains homework assignments, a variety of problems for FDM, FEM and FVM are included in an appendix. To facilitate students and practitioners intending to develop a large-scale computer code, an example of FORTRAN code capable of solving compressible, incompressible, viscous, inviscid, 1D, 2D and 3D for all speed regimes using the flowfield-dependent variation method is made available.
Introduction to Computational Fluid Dynamics
Author: Anil W. Date
Publisher: Cambridge University Press
ISBN: 1139446835
Pages:
Year: 2005-08-08
View: 663
Read: 969
Introduction to Computational Fluid Dynamics is a textbook for advanced undergraduate and first year graduate students in mechanical, aerospace and chemical engineering. The book emphasizes understanding CFD through physical principles and examples. The author follows a consistent philosophy of control volume formulation of the fundamental laws of fluid motion and energy transfer, and introduces a novel notion of 'smoothing pressure correction' for solution of flow equations on collocated grids within the framework of the well-known SIMPLE algorithm. The subject matter is developed by considering pure conduction/diffusion, convective transport in 2-dimensional boundary layers and in fully elliptic flow situations and phase-change problems in succession. The book includes chapters on discretization of equations for transport of mass, momentum and energy on Cartesian, structured curvilinear and unstructured meshes, solution of discretised equations, numerical grid generation and convergence enhancement. Practising engineers will find this particularly useful for reference and for continuing education.